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NONHOMOGENEOUS COPOLYMERIZATION KINETICS: 
FIRST-ORDER MARKOVIAN SYSTEMS* 

JAMES F. ROSS 

Quantum Chemical Corp. 
Morris, Illinois 60450 

ABSTRACT 

Equations correlating sequence distributions of nonhomogeneous 
first-order Markovian copolymer systems have been derived. For 
systems where (r,r2) differs by a factor of 2 from unity, a cubic 
power series approximation in polymer composition is necessary to  
predict triads to a standard deviation of -0.001-0.003. This preci- 
sion holds over fairly broad ranges of (r,r2) and distribution func- 
tion moments. Prediction of kinetic factors from sequence distribu- 
tion data requires such precision that any derived data are 
questionable. Where two catalysts are involved, at least one of 
which is non-Bernoullian, there does not appear to be a practical 
way to derive kinetic data from triad sequences. Such systems can 
simulate homogeneous Bernoullian systems very closely. 

INTRODUCTION 

Kinetic modeling of polymerization reactions is becoming increasingly 
sophisticated. More powerful computers are allowing more parameters 
to be studied in greater detail than was possible only a few years ago 111. 
The predictions of these models, however, do not always agree with 

*Fourth in a series on statistics of nonhomogeneous systems. 
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576 ROSS 

certain experimental results (though logically they should be expected 
to), yet agree with other hard experimental data. 

This situation does arise in copolymerization where basic kinetic pa- 
rameters are linked to polymer sequence distributions. Several cases have 
been solved that yield satisfactory predictions of sequences from kinetics 
and vice versa: 

Homogeneous, steady-state 0-3-order Markovian 
Nonhomogeneous, zero-order Markovian 

The general case, however, has not been solved. 
Previous papers in this series [2-51 developed kinetic models for non- 

homogeneous Bernoullian, i.e., zero-order Markovian, copolymer sys- 
tems. Dyad, triad, and tetrad copolymer distributions were derived and 
compared to experimental copolymer distributions. 

Extension of these models to nonhomogeneous first-order Markovian 
systems was briefly considered in these papers but not developed. Factors 
relating first-order to zero-order probabilities were treated as constants, 
calculated at average copolymer composition, and not the functions of 
copolymer composition that they really are. This assumption simplified 
the mathematics but left the meaning of the data in doubt. 

In this paper the nonhomogeneous model is extended to include first- 
order Markovian copolymer systems where the factors are expanded as 
power series in composition prior to  summing the independent probabil- 
ity functions over all species present. 

Two cases are developed. In the first, nonhomogeneity arises because 
of physical factors such as diffusion or varying comonomer composi- 
tion. In the second, two catalyst species are the cause of nonhomoge- 
neity. 

TRIAD DISTRIBUTIONS 

Probability equations for nonhomogeneous first-order triads had pre- 
viously been derived in terms of three parameters, (m), ( r , / a ) ,  and (r2ct) 
121 : 

P I , ,  = m3F,,,, 

PIl2 = 2m2U - m)FIl2, 

whereF,,, = (r,/a)’/[l + ( r , / a  - l)m]’ (la) 

whereF,,, = (r,/a)/[l + ( rJa  - l)m]’ (lb) 
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NONHOMOGENEOUS COPOLYMERIZATION KINETICS 577 

PZl2 = m(1 - m)2F212, whereF,,, = 1/[1 + @,/a - l)m12 (lc) 

Similarly: 

PI,, = m2(1 - m)FI2,, 

whereF,,, = 1/[1 + (r2a 

PI,, = 2m(l - m)zF122, 

where F122 = (r2a)/[1 + (r2a 

P 2 2 2  = (1 - mP~222, 

whereF,,, = (r2a)’/[l + (r2a - 1)(1 - m)12 (If)  

Here, 

(Y = [m/(l - m)]/[(l - M)/M] 

= r,[l + (r, - l)M]/[r,r2 + (r, - r,r@4] (2) 

Some simplification is immediately possible. Equation (2) can be re- 
arranged to yield 

so that all the denominators in Eqs. (1) are the same. 
In previous papers, first-order Markovian systems were treated by 

calculating the six triad functions, F,,, to F,,,, at average polymer com- 
position, mo, for given values of rI and r,. Then, the pseudotriads P u k /  

F,,k etc. were correlated as if they followed nonhomogeneous Bernoullian 
kinetics; that is, the functions F,,, etc. were regarded as constants for 
each m, and (r1r2) product. 

Actually, however, the functions Fik are very much functions of (m) 
as well as (rIr2). Their relationships is illustrated in Fig. 1, where they are 
plotted against polymer composition for (r1r2) = 2.0 and 0.5. Note that 
the three functions for Component 2 when plotted against (1 - m) are 
exact mirror images of the functions shown. 

Call [lo] has derived the expression 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



578 ROSS 

MOI, FRACTION 

FIG. 1 .  Homogeneous first-order triad factors. 

from Eq. (2). This equation together with Eq. (2') demonstrates that FiilI 
are not functions of (m), (r , ) ,  and (r2) individually, but rather are nonlin- 
ear functions of (m) and (rlr2) only. In principle, Eqs. (2) may be substi- 
tuted into Eqs. (1) to permit direct calculation of probabilities, but the 
algebra becomes complicated. 

However, these factors may be closely approximated by a power series 
expansion in composition for any given (rlr2): 
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NONHOMOGENEOUS COPOLYMERIZATION KINETICS 579 

FIl2 = (r , /a) /[ l  + ( r l / a  - l)mI2 = bo + b,m + b2m2 

+ b3m3 + . . . (3b) 

F222 = (r2a)2/[1 + (r2a - 1 ) ( 1  - m)I2 = f o  + f l m  + f2m2 

+ f3m3 + . . (30 

Probably the simplest method of calculating the coefficients in Eqs. 
(3) for various values of (rlr2) is to compute the F)ik at each 0.01 incre- 
ment of m from 0.01 to 0.99 as input to a double precision statistical 
program. This is the procedure used throughout this paper. 

In general, cubic expansion of F, , , ,  Fllz, F,22, and F222 gave correlation 
coefficients in excess of 0.99. The functions FZl2 and FI2,  were repre- 
sented to a similar accuracy by a second power correlation equation, 
i.e., c3 = d3 = 0. 

Nonhomogeneous first-order triad probabilities are calculated by the 
technique used previously: 

1 .  Equations (3) are substituted into appropriate Eqs. (1). 
2. Individual molecular probabilities are accounted for by the substi- 

3. The power series are expanded term by term, then summed for all 

That is, for example, 

tution m = (m, + 6). 

independent molecular species to obtain overall probabilities. 

P , , ,  = z(rn3)(a, + a,m + a2m2 + a3m3 + - . ) (4) 

= C[ao(mo + 613 + a,(mo + + . ] (4‘) 

As previously defined, xn is the (n)th moment of the distribution 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



580 ROSS 

function of 6 about its mean value of zero, and Flll0 is the value of F,,, 
at m = mo. This yields 

Similarly: 
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NONHOMOGENEOUS COPOLYMERIZATION KINETICS 58 1 

In setting up the equations for P,21, all d, = c, by Eq. (2’). 

P I 2 2  = 2F12201710(1 - mo)2 

+ [(el - 2e2) + 3(e2 - 2e, + co)mo 

+ 6(e3 - 2e2 + e,)rni 

+ 10(e2 - 2e3)mi + 15e3mi + . - ]x2 
+ [(e2 - 2e1 + eo) + 4(e3 - 2e2 + e,)mo 

+ 10(e, - 2e3)mi + 20e3mi + * * - 1x3 

+ [(e, - 2e2 + e l )  + 5(e2 - 2e3)m0 + 15e2mi + - . . Ix4 
+ [(e2 - 2eJ + 6e3mo + . - lxs  
+ e,x, + * * * (5e) 

where 

ko = f o  

k l  = fl - 3f0 

k2 = f 2  - 3f l  + 3f0 

k3 = f 3  - 3f2 + 3f l  - f o  

Similarly for dyads: 

pII = m2(r,/a)/[l + ( r , /a  - 1)ml 

= m2[Ao + A,m + A2m2 + A,m3 + - - I 
P I ,  = 2m(l - m)/[ l  + ( r J a  - 1)ml 

= 2m(l - m)[Bo + Blm2 + B2m2 + . - - ] 
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, . .  

EXAMPLE I 

The validity and accuracy of these equations may be tested for a 
first-order Markovian copolymerization where (r1r2) = 2.0 and the poly- 
mer is a paper blend of 2 parts (mo - 0.1) and 1 part (mo + 0.2). Mo- 
ments of this distribution function can be calculated directly from the 
definition. 

First-order factors are obtained as described previously. Their values in 
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NONHOMOGENEOUS COPOLYMERIZATION KINETICS 583 

this example and the corresponding degree of correlation, as measured 
by squares of correlation coefficients, are 

F,, ,  = 3.761220 - 9.671216rn + 12.438375rn2 - 5.626758rn3 

(9 = 0.9963) (8a) 

FIl2 = 1.911619 - 3.745522rn + 4.532010m2 - 1.745908rn3 

(? = 0.9956) (8b) 

F2,, = F,,, = 0.962884 - 1.143912rn + 1.143912rn2 

(? = 0.9875) (8c, d) 

FI2, = 0.952199 - 0.080772rn - 0.705715rn’ + 1.745908rn3 

(? = 0.9956) (8e) 

F222 = 0.901621 + 1.674739rn - 4.441898rn2 + 1.745958rn3 

(? = 0.9963) (8f) 

Alternatively, these functions may be correlated by second power 
equations with some loss in accuracy: 

F,,, = 3.471386 - 6.278168rn + 3.998239rn2 

(? = 0.9759) (9a) 

F,,’ = 1.821688 - 2.692704rn + 1.913147rn2 

(? = 0.9811) (9b) 

F,,, = F212 = identical Eqs. (8c) and (8d) above. 

FlZ2 = 1.042130 - 1.133590rn + 1.913147rn2 

(? = 0.9811) (9e) 

F,,, = 1.191456 - 1.718309rn + 3.998239rn2 

(? = 0.9759) (90 

Linear correlations may also be obtained, but they are considerably 
less precise. The squares of correlation coefficients drop to 0.7-0.8. 
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584 ROSS 

A comparison can be made to the previously described algorithm [2] 

These methods are compared in Table 1 for rl = 4.0, r2 = 0.5, and 
where first-order factors are treated as constants. 

m, = 0.3. In this case, triad functions are 

F,,,, = 1.83052 

FIl2, = 1.14830 

F2,, = FI2,,  = 0.72034 

FIZZ, = 0.90374 

F2220 = 1.13386 

EXAMPLE II 

A similar analysis may be made when (rIr2) c 1. Here, for rl = 2.0, 
r2 = 0.25, or (r1r2) = 0.5, comments as in Example 1 and m, = 0.3, 
data in Table 2 are obtained. 

These data again indicate that the cubic correlation equations give 
excellent fits to the data. The square and linear approximations are not 
as precise, but superior to first- or zero-order Markovian kinetics and 
the original method. 

The original method may be said to predict triad distributions more 
closely than homogeneous zero- or first-order equations, but gives little 
if any insight into compositional distribution parameters. In fact, what 
information it does yield is incorrect for first-order Markovian systems. 
For example, the original model yields x 2  = 0.012 and 0.033, respec- 
tively, vs 0.02 and x3 = 0.0006 and 0.0039, respectively, vs 0.002, signif- 
icantly misestimating the degree of nonhomogeneity really present. 

Actually, triad distributions are quite insensitive to distribution func- 
tion moments. 

In Example I above, with the original method’s estimates of x2 = 
0.012, x3 = 0.0006, x4 = xs = xs = 0, triads are predicted reasonably 
well (a = 0.0075): 

P I , ,  = 0.0597 

PI , ,  = 0.1395 

P212 = 0.0988 

PI,, = 0.0451 

PIZ2 = 0.2450 

P222 = 0.4119 
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NONHOMOGENEOUS COPOLYMERIZATION KINETICS 587 

Furthermore, if moments are assumed to be 10, 25, and 50% higher 
than in Example I, Eqs. ( 5 )  yield triad distributions with u = 0.0047, 
0.0082, and 0.0142 respectively. 

The equations are not very sensitive to changes in (r1r2) product that 
are not too far removed from unity. For example, if (rIr2) is 10% higher 
than its true value in Example I above, triad distributions are predicted 
with u = 0.0062 and 0.01 14, respectively, for cubic and square approxi- 
mations. For comparison, homogeneous zero- and first-order Marko- 
vian kinetics fit the “experimental” triads with u = 0.0181 and 0.0536, 
respectively. 

Errors in both reactivity ratio products and distribution function mo- 
ments may cancel if one is positive and the other negative. If the data of 
Table 1 are recalculated with reactivity ratios each 5 %  higher and mo- 
ments 10% lower than actual, a closer estimate than even the cubic 
correlation to “experimental” triads results (u = 0.0022). 

In dealing with nonhomogeneous first-order Markovian systems not 
too far removed from (r1r2) = 1 ,  accurate estimates of reactivity ratio 
products and distribution function moments are not necessary to corre- 
late or predict copolymer compositional distributions. Conversely, how- 
ever, even accurate measurements of experimental triads may not yield 
accurate or unique reactivity ratio products or distribution function mo- 
ments. 

This situation does not exist when the nonhomogeneous system fol- 
lows zero-order Markovian statistics. Previous papers and the equations 
discussed in this paper demonstrate that when (r,r2) = 1, all cross- 
product terms drop out of the equations and a series of unique relation- 
ships between moments and composition remains. 

The cross-product or interaction terms assume greater and greater 
influence in the equations as (r,r2) differs more and more from unity. 
Even when (rlr2) differs by a factor of 2, as in Examples I and 11, a large 
number of interaction terms are needed to  replicate triad data closely. 
Even then, though results are close, they are not exact. At much larger 
(rIr2) values, the analysis of composition data fails to yield any meaning- 
ful kinetic data. 

On the other hand, a theoretical model can be analyzed by the present 
model to predict compositional distributions of nonhomogeneous sys- 
tems. An example would be a batch polymerization where monomer 
phase composition varies throughout a run, where catalyst activity varies 
with time, or the copolymerization is diffusion controlled. Here, how- 
ever, agreement between model and experiment would not necessarily 
prove or test the model. 
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588 ROSS 

MULTIPLE CATALYST SYSTEMS 

A previous paper [ 5 ]  showed that copolymer triad distributions com- 
bined with coexistent monomer compositions readily yield estimates of 
reactivity ratios provided that (a) there are no more than two catalyst 
species and (b) each catalyst individually follows Bernoullian or zero- 
order Markovian kinetics. Subsequently, Floyd [6] showed in effect that 
the equations do not apply to mixtures of first-order Markovian cata- 
lysts. Calculated results could be quite misleading. There are several 
reasons for this. 

Equations ( 5 )  and (6) in this paper need an estimate of (rlrz) product 
to define the power series coefficients in the single catalyst nonhomoge- 
neous case. If two or more first-order Markovian catalysts are being 
dealt with, some average value of (rlrz) may be assumed to  be the appro- 
priate correlating parameter. 

Cozewith and Ver Strate [7] showed that overall reactivity ratios in 
multicatalyst systems are weighted averages of individual reactivity ra- 
tios. Weighing factors are combinations of kinetic parameters that are 
generally not known apriori. Both overall reactivity ratios, 7, and i,, are 
averaged individually and so in general, their product will not be a simple 
average of individual (rlrz) products. In fact, for a two-component Ber- 
noullian system, their Eqs. (A12a and A12b) reduce to (retaining their 
nomenclature): 

which always exceeds unity. 
Where first-order Markovian kinetics apply, the overall reactivity ra- 

tio product is a more complex combination of individual reactivity ra- 
tios. 

Ross [2] has shown that reactivity ratio products that are derived from 
coexistent monomer and copolymer compositions do not agree with 
those derived from dyad data whenever any nonhomogeneity exists - 
such as arises from two catalysts, but rather, 

Actually, for two Bernoullian catalysts 
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NONHOMOGENEOUS COPOLYMERIZATION KINETICS 509 

4p,,p22/p,: = 1 + x2/[mo(l - mo) - X2l2 (12) 

The two approaches, Eq. (10) from consideration of individual rate 
constants and Eq. (12) from distribution functior, moments, are in prin- 
ciple interchangeable. They agree that the dyad ratio 4P,IP22/PI: will 
exceed (r1r2) derived from kinetics or moments for nonhomogeneous 
systems. Because the term “reactivity ratio product” designates (r1r2) and 
has priority of usage, and because “dyadic reactivity ratio product” is 
awkward and intimates an equality that only exists as a limiting case 
(i.e., homogeneity), “dyad ratio” seems a more precise and less mislead- 
ing term. 

For more than two first-order Markovian catalysts, the relationship is 
even more complex and of limited utility when attempting to unravel the 
copolymerization kinetics. 

A combination of two first-order Markovian catalysts can produce 
particularly misleading results if one catalyst follows (r1r2) > 1 and the 
other (rIr2) < 1 .  This is because the first will tend to produce higher 
than Bernoullian P I , ,  and P222, while the second enhances PI, ,  and PZl2. 
This is shown in Example 111. 

EXAMPLE 111 

In another thought experiment, the catalysts of Examples I and I1 are 
combined; these compositions are given in Table 3. They independently 
produce equal amounts of copolymers. 

These data are correlated by the Fineman-Ross [8] technique to yield 
the values in Table 4. These values may be compared to the arithmetic 
mean of individual reactivity ratios for the two catalysts, 7, = 3.0, 7, 
= 0.375, FIT2) = 1.125. 

The triad distributions are compared to Bernoullian probabilities in 
Table 5 .  

It would be difficult not to conclude that this system follows classical 
homogeneous Bernoullian kinetics. Such a possible misinterpretation is 
also possible if one species is nonhomogeneous Bernoullian. This is 
shown in the next example. 

EXAMPLE IV 
An ethylene-propylene copolymer could be produced from a mixed 

Ziegler-Natta catalyst: TiCI, + VCI, + DEAC in another thought ex- 
periment. The titanium and vanadium chlorides are assumed to react 
independently. 
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TABLE 4. 

rl from slope r, from slope 

Standard Standard 
Value deviation Value deviation 

rl 2.6563 0.001 1 2.7454 0.0020 
r2 0.3081 0.0014 0.3451 0.0002 
r,r, 0.8183 - 0.9474 - 

The catalyst TiC13 + DEAC is nonhomogeneous but Bernoullian (rl  
= 3.2, r, = 0.3) as shown in Ross’ [2] analysis of Kakugo et al. [9] data. 
The system VC1, + DEAC has been stated by Cozewith and Ver Strate 
[7] to be first-order Markovian: rl = 5.9, r, = 0.029. 

If equal parts of polymer are produced with each catalyst where mo- 
nomer phase composition is 0.504 mol fraction propylene (Kakugo et 
al., Polymer H), triad data can be obtained and compared to both homo- 
geneous and nonhomogeneous Bernoullian predictions, listed in Table 
6. 

Agreement with Bernoullian kinetics is not exact, but close (a = 
0.035). Lacking other data, one could reasonably hypothesize a new Ti- 
V complex as the catalytic active site that produces copolymer by a 
homogeneous Bernoullian mechanism. One could even more reasonally 
hypothesize a nonhomogeneous Bernoullian system (a = 0.012). 

CONCLUSIONS 

Equations have been derived that correlate triad distributions of non- 
homogeneous first-order Markovian copolymers. These equations are 
nonlinear and require a cubic power series approximation to replicate 
triads to an order of magnitude closer than simple homogeneous Ber- 
noullian statistics. They require prior knowledge of both reactivity ratio 
product and moments of the copolymer distribution function. In princi- 
ple, triad distributions can predict kinetic parameters, but small errors 
in measured triads can lead to large errors in kinetic parameters. These 
equations would be most useful in predicting triad distributions of math- 
ematical kinetic models. 
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TABLE 6. Triads 

Triad m, EEE EEP PEP EPE EPP PPP 

From Ti 0.75 0.52 0.17 0.05 0.11 0.10 0.04 
From V 0.87 0.64 0.21 0.02 0.12 0.01 0.00 
“Experimental” 0.81 0.58 0.19 0.03 0.12 0.05 0.02 
Bernoullian 0.81 0.53 0.25 0.03 0.13 0.06 0.01 
N-H 0.81 0.57 0.21 0.03 0.10 0.07 0.02 

Analysis of multicatalyst systems is complex unless there are only 
two catalysts and they both follow Bernoullian kinetics. Furthermore, 
multicatalyst systems can mimic classical homogeneous Bernoullian ki- 
netics rather closely. 

Previous statements that coexistant polymer-monomer phase compo- 
sition data yield unambiguous reactivity ratio products are clearly in 

NOMENCLATURE 

coefficient of nth power term in power series expansion of F,,, 
coefficient of nth power term in power series expansion of F,, 
coefficient of nth power term in power series expansion of F,,, 
coefficient of nth power term in power series expansion of FI2 
coefficient of nth power term in power series expansion of F,,, 
coefficient of nth power term in power series expansion of FZ2 
coefficient of nth power term in power series expansion of F,,, 
coefficient of nth power term in power series expansion of F,22EI 
coefficient of nth power term in power series expansion of F222 
ratio of first-order Markovian to Bernoullian probabilities for 
dyad i j  
ratio of first-order Markovian to Bernoullian probabilities for 
triad ijk 
combinations of& in Eq. (50 
rate constants in Eq. (10) only 
fraction component i species in Eq. (10) only 
mol fraction component 1 in polymer 
mol fraction component 1 in coexistant monomer phase 
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0 
pij 
Pijk 
r 
ri 
Ri 
a 

6 

X n  

U 

as subscript, value at average composition 
probability of finding dyad ij in polymer 
probability of finding triad ijk in polymer 
statistical correlation coefficient 
reactivity ratio of component i 
overall reactivity ratio of component i in Eq. (10) only 
copolymer equivalent of distillation relative volatility. Defined 
by eq. (2) 
difference between individual and average mol fraction com- 
pound 1 in polymer 
the nth moment of the distribution function of 6 about its mean 
value of 0 
standard deviation of calculated triads from experimental values, 
defined in the Table 1 footnote 
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